skip to main content


Search for: All records

Creators/Authors contains: "Yan, Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10). 
    more » « less
    Free, publicly-accessible full text available November 20, 2024
  2. Heterogeneous hydroxyl radical (•OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition. It was recently demonstrated that heterogeneous •OH oxidation can age single-component particulate methyltetrol sulfates (MTSs), causing ∼55% of the SOA mass loss. However, our most recent study of freshly generated IEPOX-SOA particulate mixtures suggests that the lifetime of the complete IEPOX-SOA mixture against heterogeneous •OH oxidation can be prolonged through the fragmentation of higher-order oligomers. Published studies suggest that the heterogeneous •OH oxidation of IEPOX SOA could affect the organic atmospheric aerosol budget at varying rates, depending on aerosol chemical composition. However, heterogeneous •OH oxidation kinetics for the full IEPOX-SOA particulate mixture have not been reported. Here, we exposed freshly generated IEPOX-SOA particles to heterogeneous oxidation by •OH under humid conditions (relative humidity ∼57%) for 0−15 atmospheric-equivalent days of aging and derived an effective heterogeneous •OH rate coefficient (kOH) of 2.64 ± 0.4 × 10−13 cm^3 molecules−1 s−1. While ∼44% of particulate organic mass of nonoxidized IEPOX-SOA was consumed over the entire 15 day aging period, only <7% was consumed during the initial 10 aging days. By molecular-level chemical analysis, we determined oligomers were consumed at a faster rate (by a factor of 2−4) than monomers. Analysis of aerosol physicochemical properties shows that IEPOX-SOA has a core−shell morphology, and the shell becomes thinner with •OH oxidation. In summary, this study demonstrates that heterogeneous •OH oxidation of IEPOX-SOA particles is a dynamic process in which aerosol chemical composition and physicochemical properties play important roles. 
    more » « less
    Free, publicly-accessible full text available October 19, 2024
  3. Isoprene (C5H8) is the largest non-methane volatile organic compound emitted into the atmosphere. Isoprene reacts rapidly with ambient hydroxyl radicals (OH) and subsequent addition of O2 results in the formation alkyl peroxy (RO2) radicals. The fate of the initially formed RO2 radicals has been the focus of continuing theoretical and experimental research. Under pristine conditions where bimolecular reactions of RO2 are limited, the thermodynamically favored RO2 undergoes an intramolecular H-shift followed by reaction with O2 and elimination of HO2 to yield 4-hydroperoxy aldehyde (4-HPALD, C5H8O3), predicted to account for up to 13% of first-generation isoprene photochemical oxidation products. Mass spectrometric evidence has been reported for 4-HPALD, but lack of an authentic standard has precluded definitive confirmation of both the structure of 4-HPALD and its origin as a first-generation product of OH oxidation of isoprene. We report the synthesis and characterization of 4-HPALD and establish that it is a major product of isoprene oxidation. Synthetic 4-HPALD is isolated as the peroxyhemiacetal. As expected for the 4-hydroperoxy aldehyde, 1H NMR spectra show no evidence for equilibration with the carbonyl form, even in protic solvents, and gas-phase chemical analysis by CIMS also shows only a single form. OH oxidation of isoprene in an oxidation flow reactor coupled to an ion mobility source with an HR-CIMS detector unequivocally demonstrates 4-HPALD (and likely also 1-HPALD) as isoprene oxidation products. Although HPALDs have been discounted as significant contributors to SOA, oxidation of 4-HPALD in a potential aerosol mass (PAM) reactor in the presence of ozone and OH indicates 4-HPALD rapidly undergoes autooxidation reactions forming low-volatility particulate products. We have confirmed highly oxygenated compounds with compositions C5H8O6 and C5H10O6 likely from OH oxidation, and C5H10O7 and C5H10O8 compounds likely products of ozonolysis. The PAM oxidation experiment further demonstrates that the highly oxygenated, low-volatility products efficiently nucleate particles. 
    more » « less
  4. Isoprene is one of the most common biogenic volatile organic compounds (BVOC) in the atmosphere, produced by many plants. Isoprene undergoes oxidation to form gaseous isoprene epoxydiols (IEPOX) under low-NOx conditions, which can lead to the formation of secondary organic aerosol (SOA) particles. SOA-containing particles affect climate by scattering and absorbing solar radiation or acting as cloud condensation nuclei (CCN). High concentrations of SOA are also associated with adverse health impacts in people. While in the atmosphere, IEPOX SOA particles continue to undergo reactions with atmospheric oxidants, including hydroxyl radical (OH). To isolate and probe this process, we studied atmospheric chemical processes in an aerosol chamber to better understand the evolution of heterogeneous OH oxidation of IEPOX-derived SOA particles. Since very little is understood about the structural and spectroscopic properties because of the complexity of their many sources and atmospheric processing, individual particle measurements are necessary to provide better understanding of the composition of IEPOX SOA. We injected particles composed of mixtures of ammonium sulfate and sulfuric acid across a range of acidities(PH = 0.5 – 2.5) and gas-phase IEPOX into the chamber to generate SOA. The SOA particles were then sent to an oxidation flow reactor, and exposed to different OH concentrations representative of aging of a number of days. We kept relative humidity (RH) constant at ~65%, the temperature was ~23 °C, and levels of oxidation were controlled by adjusting lamp intensity. After oxidized SOA was impacted on quartz substrates, we used single-particle Raman microspectroscopy to identify their functional group compositions. From the Raman vibrational spectra of submicron particles (~500-1000 nm aerodynamic diameter), we observed a distinct difference in core-shell morphology and composition: an organic outer layer and an aqueous-inorganic core. The core also has significantly more CH-stretch than the shell. Small changes were also observed with increasing oxidation, which are important to consider when predicting SOA particle evolution in the atmosphere. 
    more » « less
  5. Isoprene has a strong effect on the oxidative capacity of the troposphere due to its abundance. Under low-NOx conditions, isoprene oxidizes to form isoprene-derived epoxydiols (IEPOX), contributing significantly to secondary organic aerosol (SOA) through heterogeneous reactions. In particular, organosulfates (OSs) can form from acid-driven reactive uptake of IEPOX onto preexisting particles followed by nucleophilic addition of inorganic sulfate, and they are an important component of SOA mass, primarily in submicron particles with long atmospheric lifetimes. Fundamental understanding of SOA and OS evolution in particles, including the formation of new compounds by oxidation as well as corresponding viscosity changes, is limited, particularly across relative humidity (RH) conditions above and below the deliquescence of typical sulfate aerosol particles. In a 2-m3 indoor chamber held at various RH values (30 – 80%), SOA was generated from reactive uptake of gas-phase IEPOX onto acidic ammonium sulfate aerosols (pH = 0.5 – 2.5) and then aged in an oxidation flow reactor (OFR) for 0 – 24 days of equivalent atmospheric ·OH exposure. We investigated the extent of inorganic sulfate conversion to organosulfate, formation of oligomers, single-particle physicochemical properties, such as viscosity and phase state, and oxidation kinetics. Chemical composition of particle-phase species, as well as aerosol morphological changes, are analyzed as a function of RH, oxidant exposure times, and particle acidity to better understand SOA and OS formation and destruction mechanisms in the ambient atmosphere. 
    more » « less
  6. Abstract We recently demonstrated that the heterogeneous hydroxyl radical (·OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with ·OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous ·OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous ·OH oxidation of IEPOX-SOA particles. Gas-phase IEPOX was reacted with inorganic sulfate particles of varying pH (0.5 to 2.0) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were then aged at a relative humidity of 60% in an oxidation flow reactor (OFR) for 0-15 days of equivalent atmospheric ·OH exposure. Aged IEPOX-SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) to measure real-time aerosol mass and chemical changes of the SOA particles, and were also collected onto Teflon filters and into PILS vials for molecular-level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), ion chromatography, and total OS mass amounts. 
    more » « less
  7. Organosulfates (OSs) formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions are an important component of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. Fundamental understanding of OS evolution in particles, including the formation of new compounds via oxidation, is limited, particularly across relative humidities above and below the deliquescence of typical sulfate aerosol particles. By generating aqueous particulate OSs and other SOA products from the acid-driven reactive uptake of isoprene epoxydiols (IEPOX) onto inorganic sulfate aerosols in a 2-m3 indoor chamber at various relative humidities (30 – 80%) and injecting them into an oxidation flow reactor under the presence of hydroxyl radicals (·OH), we investigate the modification of particle size distributions, extent of inorganic sulfate conversion to organosulfates, and single-particle physicochemical properties. Chemical composition of particle-phase species, as well as aerosol morphological changes, are analyzed as a function of relative humidity and oxidant exposure times to better understand OS formation and destruction mechanisms in the ambient atmosphere. 
    more » « less
  8. The ability of an atmospheric aerosol particle to take up water or to participate in heterogeneous reactions is highly influenced by its phase state – solid, semi-solid, or liquid. The changes in phase state can be predicted by glass transition temperature (Tg), as particles at temperatures below their Tg will show solid properties, while increasing the temperature above their Tg will allow for semi-solid and eventually liquid properties. Historically, measurements of the Tg of bulk materials have been studied in order to model the phase states of aerosols in the atmosphere; however, these methods only permit an estimation of aerosol Tg based on their bulk chemical composition. Determining the Tg of individual particles will allow for more accurate model predictions of aerosol phase state. Herein, we apply a recently developed method utilizing a nano-thermal analysis (nanoTA) module coupled to an atomic force microscope (AFM), to determine the Tg of individual secondary organic aerosol (SOA) particles generated from the reactive uptake of isoprene-derived epoxydiols (IEPOX) onto acidic ammonium sulfate aerosol particles. NanoTA works by using a specialized AFM probe which can be heated while in contact with a particle of interest. As the temperature increases, the probe deflection will first increase due to thermal expansion of the particle followed by a decrease at its melting temperature (Tm). The Tg of the particle can then be determined from Tm using the Boyer–Beaman rule. We compare the Tg of the SOA particles formed from IEPOX uptake onto ammonium sulfate particles with different initial aerosol pH values, as well as under a range of oxidant exposure conditions. Our measurements will allow for more accurate representations of the phase state of aerosols under a range of atmospheric conditions. 
    more » « less
  9. Abstract Secondary organic aerosol (SOA) is key to our climate, affecting Earth’s radiative balance both indirectly and directly. Understanding the chemical composition and properties of SOA are crucial to accurately predict their concentrations and ultimately their impact on climate in models. Multiphase chemical reactions in the atmosphere have been found to form a variety of low-volatility, high-molecular-weight species, or oligomers. Although oligomers may constitute a large portion of SOA, they are not well understood. Most analytical techniques are unable to detect such high-mass organic species, so their formation and degradation mechanisms are still in need of investigation. Herein, we present a method using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to determine the oligomeric content of aerosol particles. We apply the method to analyze SOA particles formed from reactive uptake of IEPOX onto acidic ammonium sulfate seed particles during atmospheric chamber experiments. We compare the oligomeric content of the particles based on key properties, including particle acidity and exposure to oxidants. We compared multiple sample collection methods, including impaction into deionized water using a Liquid Spot Sampler (Aerosol Devices) and direct impaction onto a sampling plate. Our work will provide insight about the formation of 
    more » « less
  10. Atmospheric aerosols significantly offset positive radiative forcing due to their contributions as cloud condensation nuclei (CCN) and ice nucleating particles (INPs). The cloud-aerosol-precipitation interactions in the atmosphere are determined by physical and chemical properties of aerosol particles, which can undergo many cycles of droplet activation and subsequent drying before dry or wet deposition from the atmosphere. Secondary organic aerosol (SOA) is an abundant class of aerosol and has been previously shown to contribute to aerosol formed from cloud processing. Isoprene-derived secondary organic aerosol SOA (iSOA) is a particularly important class of aerosol involved in cloud processing. iSOA has both soluble and insoluble components, but there has been a measurement gap in characterizing the insoluble components, as most analyses have focused on soluble components. These measurements are needed as previous research has suggested that insoluble components could be important with respect to CCN and INP formation. Herein, we analyze the insoluble components of SOA generated from the reactive uptake of IEPOX onto acidic seed particles (ammonium sulfate + sulfuric acid at different ratios for different pH conditions) in an atmospheric chamber. We characterize the size distributions and chemical composition, using NanoParticle Tracking Analysis (NTA), Raman microspectroscopy and atomic force microscopy infrared (AFM-IR) spectroscopy as a function of sulfate aerosol seed pH. These insights may help understand aerosol properties after cloud cycling in the atmosphere. 
    more » « less